Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Curr Protoc ; 2(10): e521, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-2047527

RESUMEN

Antibody detection assays are essential for evaluating immunity of individuals against a given virus, and this has been particularly relevant during the COVID-19 pandemic. Current serology assays either require a laboratory setting and take >1 hr (i.e., enzyme-linked immunosorbent assay [ELISA]) or are rapid but only qualitative in nature and cannot accurately track antibody levels over time (i.e., lateral flow assay [LFA]). Therefore, there is a need for development of a rapid and simple but also quantitative assay that can evaluate antibody levels in patients accurately over time. We have developed an assay that uses a split nanoluciferase fused to the spike or nucleocapsid proteins of the SARS-CoV-2 virus to enable luminescent-based detection of spike- or nucleocapsid-binding antibodies in serum, plasma, and whole blood samples. The resulting approach is simple, rapid, and quantitative and is highly amenable to low-/medium-throughput scale using plate-based assays, high-throughput scale using robotics, and point-of-care applications. In this article, we describe how to perform the assay in a laboratory setting using a plate reader or liquid-handling robotics and in a point-of-care setting using a handheld, battery-powered luminometer. Together, these assays allow antibody detection to be easily performed in multiple settings by simplifying and reducing assay time in a laboratory or clinical environment and by allowing for antibody detection in point-of-care, nonlaboratory settings. © 2022 Wiley Periodicals LLC. Basic Protocol: SARS-CoV-2 antibody detection using the split-luciferase assay on a medium-throughput scale with a laboratory luminometer Alternate Protocol 1: High-throughput-based protocol for SARS-CoV-2 antibody detection using a robotic platform Alternate Protocol 2: Point-of-care-based protocol for SARS-CoV-2 antibody detection using a handheld luminometer Support Protocol: Determining positive/negative cutoffs for test samples and standardizing the assay between days.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Anticuerpos Antivirales/análisis , COVID-19/diagnóstico , Técnicas de Laboratorio Clínico/métodos , Humanos , Luciferasas , Proteínas de la Nucleocápside , Pandemias , SARS-CoV-2 , Sensibilidad y Especificidad
2.
JCI Insight ; 7(13)2022 07 08.
Artículo en Inglés | MEDLINE | ID: covidwho-1932894

RESUMEN

BACKGROUNDProlonged symptoms after SARS-CoV-2 infection are well documented. However, which factors influence development of long-term symptoms, how symptoms vary across ethnic groups, and whether long-term symptoms correlate with biomarkers are points that remain elusive.METHODSAdult SARS-CoV-2 reverse transcription PCR-positive (RT-PCR-positive) patients were recruited at Stanford from March 2020 to February 2021. Study participants were seen for in-person visits at diagnosis and every 1-3 months for up to 1 year after diagnosis; they completed symptom surveys and underwent blood draws and nasal swab collections at each visit.RESULTSOur cohort (n = 617) ranged from asymptomatic to critical COVID-19 infections. In total, 40% of participants reported at least 1 symptom associated with COVID-19 six months after diagnosis. Median time from diagnosis to first resolution of all symptoms was 44 days; median time from diagnosis to sustained symptom resolution with no recurring symptoms for 1 month or longer was 214 days. Anti-nucleocapsid IgG level in the first week after positive RT-PCR test and history of lung disease were associated with time to sustained symptom resolution. COVID-19 disease severity, ethnicity, age, sex, and remdesivir use did not affect time to sustained symptom resolution.CONCLUSIONWe found that all disease severities had a similar risk of developing post-COVID-19 syndrome in an ethnically diverse population. Comorbid lung disease and lower levels of initial IgG response to SARS-CoV-2 nucleocapsid antigen were associated with longer symptom duration.TRIAL REGISTRATIONClinicalTrials.gov, NCT04373148.FUNDINGNIH UL1TR003142 CTSA grant, NIH U54CA260517 grant, NIEHS R21 ES03304901, Sean N Parker Center for Allergy and Asthma Research at Stanford University, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative, Sunshine Foundation, Crown Foundation, and Parker Foundation.


Asunto(s)
COVID-19 , COVID-19/complicaciones , Humanos , Inmunoglobulina G , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
3.
Cell ; 184(2): 323-333.e9, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: covidwho-956964

RESUMEN

The December 2019 outbreak of a novel respiratory virus, SARS-CoV-2, has become an ongoing global pandemic due in part to the challenge of identifying symptomatic, asymptomatic, and pre-symptomatic carriers of the virus. CRISPR diagnostics can augment gold-standard PCR-based testing if they can be made rapid, portable, and accurate. Here, we report the development of an amplification-free CRISPR-Cas13a assay for direct detection of SARS-CoV-2 from nasal swab RNA that can be read with a mobile phone microscope. The assay achieved ∼100 copies/µL sensitivity in under 30 min of measurement time and accurately detected pre-extracted RNA from a set of positive clinical samples in under 5 min. We combined crRNAs targeting SARS-CoV-2 RNA to improve sensitivity and specificity and directly quantified viral load using enzyme kinetics. Integrated with a reader device based on a mobile phone, this assay has the potential to enable rapid, low-cost, point-of-care screening for SARS-CoV-2.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , Teléfono Celular/instrumentación , Imagen Óptica/métodos , ARN Viral/análisis , Carga Viral/métodos , Animales , Prueba de Ácido Nucleico para COVID-19/economía , Prueba de Ácido Nucleico para COVID-19/instrumentación , Sistemas CRISPR-Cas , Línea Celular , Proteínas de la Nucleocápside de Coronavirus/genética , Humanos , Nasofaringe/virología , Imagen Óptica/instrumentación , Fosfoproteínas/genética , Pruebas en el Punto de Atención , Interferencia de ARN , ARN Viral/genética , Sensibilidad y Especificidad , Carga Viral/economía , Carga Viral/instrumentación
4.
EClinicalMedicine ; 27: 100518, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: covidwho-730421

RESUMEN

BACKGROUND: Most data on the clinical presentation, diagnostics, and outcomes of patients with COVID-19 have been presented as case series without comparison to patients with other acute respiratory illnesses. METHODS: We examined emergency department patients between February 3 and March 31, 2020 with an acute respiratory illness who were tested for SARS-CoV-2. We determined COVID-19 status by PCR and metagenomic next generation sequencing (mNGS). We compared clinical presentation, diagnostics, treatment, and outcomes. FINDINGS: Among 316 patients, 33 tested positive for SARS-CoV-2; 31 without COVID-19 tested positive for another respiratory virus. Among patients with additional viral testing (27/33), no SARS-CoV-2 co-infections were identified. Compared to those who tested negative, patients with COVID-19 reported longer symptoms duration (median 7d vs. 3d, p < 0.001). Patients with COVID-19 were more often hospitalized (79% vs. 56%, p = 0.014). When hospitalized, patients with COVID-19 had longer hospitalizations (median 10.7d vs. 4.7d, p < 0.001) and more often developed ARDS (23% vs. 3%, p < 0.001). Most comorbidities, medications, symptoms, vital signs, laboratories, treatments, and outcomes did not differ by COVID-19 status. INTERPRETATION: While we found differences in clinical features of COVID-19 compared to other acute respiratory illnesses, there was significant overlap in presentation and comorbidities. Patients with COVID-19 were more likely to be admitted to the hospital, have longer hospitalizations and develop ARDS, and were unlikely to have co-existent viral infections. FUNDING: National Center for Advancing Translational Sciences, National Heart Lung Blood Institute, National Institute of Allergy and Infectious Diseases, Chan Zuckerberg Biohub, Chan Zuckerberg Initiative.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA